

7-HYDROXY-6,7-SECO-KAURENES AS INHIBITORS OF GIBBERELLIN BIOSYNTHESIS IN *GIBBERELLA FUJIKUROI*

MARK K. BAYNHAM, JULIA M. DICKINSON and JAMES R. HANSON

School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9QJ, U.K.

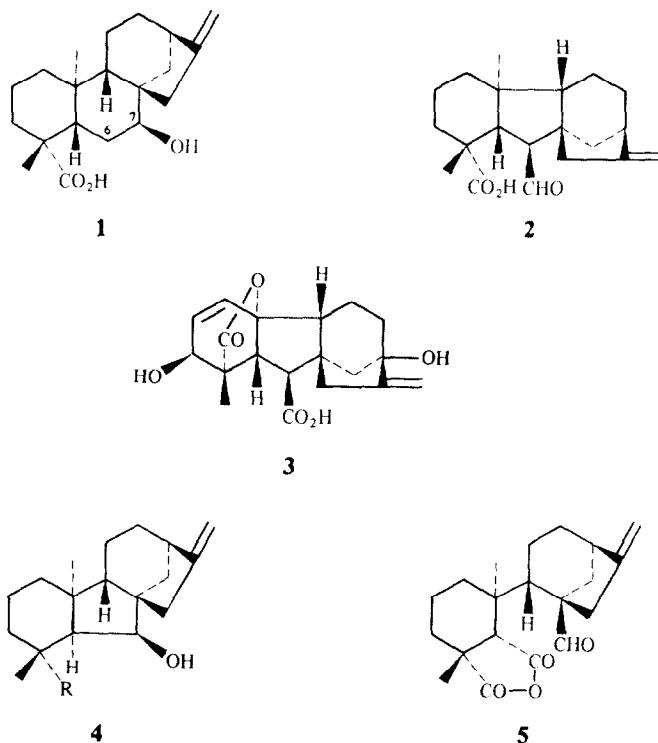
(Received 15 June 1987)

Key Word Index—*Gibberella fujikuroi*; gibberellic acid biosynthesis; 7-hydroxy-6,7-seco-kaurenes; plant growth regulators.

Abstract—Some 7-substituted-6,7-seco-kaurenes have been shown to be inhibitors of gibberellic acid biosynthesis from [2-¹⁴C] mevalonic acid in the fungus *Gibberella fujikuroi*.

INTRODUCTION

The development of inhibitors of gibberellin biosynthesis through the synthesis of mimics of key biosynthetic intermediates has formed a rational approach to the development of novel plant growth regulators [1-3]. The oxidative ring contraction of *ent*-7 α -hydroxykaurenoic acid (**1**) to gibberellin A₁₂ 7-aldehyde (**2**) [4, 5] is a biosynthetic step which, whilst being mechanistically very unusual, is nevertheless common to all the gibberellins such as **3**. Labelling studies [5] have shown that the ring contraction is accompanied by the abstraction of the equatorial 6 β -hydrogen atom. Furthermore 'analogue biosynthesis' has revealed [4] that this step is not completely structure specific and hence it is a step which is open to inhibition by active site directed substrate mimics. In our previous studies we have shown [1] that the 7-hydroxy-B-norkaurenes (**4**, R = CH₂OH and CO₂H) lacking C-6, inhibit this stage. The inhibition was very dependant on the stereochemistry of the hydroxyl group. In this paper we describe our work on a series of 6,7-seco-kaurenes derived from the readily available *Gibberella fujikuroi* metabolite, fujenal (**5**). These compounds were selected for study because, whilst they possess a partial formal similarity to *ent*-7 α -hydroxykaurenoic acid, they lack an essential component, namely the 6,7-bond, for the ring contraction.


RESULTS AND DISCUSSION

Reduction of fujenal (**5**) with sodium borohydride or lithium aluminium hydride gave, *inter alia*, the alcohol (**6**) [6]. This compound, which possesses the 7-hydroxyl and rings C and D of *ent*-7 α -hydroxykaurenoic acid (**1**), proved to be an efficient inhibitor of gibberellic acid biosynthesis from [2-¹⁴C] mevalonic acid in the fungus, *Gibberella fujikuroi* (Table 1). Consequently we examined some structure: activity relationships in this series. The proposed mechanism for the oxidative ring contraction envisages the abstraction of the 7-hydroxyl proton by a base. This might be alkylatable by a substrate mimic with a C-7 leaving group or it might condense to form a Schiff's base with a formyl group leading to irreversible inhibition of the biosynthesis. Hence we examined some simple structural variations at C-7.

The alcohol (**6**) readily gave a mono-acetate (**7**) with acetic anhydride in pyridine and a monomethanesulphonate (**8**) on treatment with methanesulphonyl chloride. When this reaction was worked up under acidic conditions, it was accompanied by some isomerization of the Δ^{16} -double bond to form the endocyclic Δ^{15} -isomer (**13**) (δ 5.40, 1H, *q*, *J* = 1.5 Hz, H-15; 1.70, 3H, *d*, *J* = 1.5 Hz, H-17). Treatment of the alcohol with triphenylphosphine in carbon tetrachloride gave the chloride (**9**) (δ 3.46 and 4.08, *d*, *J* = 11 Hz, H-7) whilst oxidation with the 8 N

Table 1. Inhibition of incorporation of [2-¹⁴C]mevalonic acid into gibberellic acid

Compound	Control		Putative inhibitor		
	(10 ⁻⁴ dpm/mg)	% incorporation	(10 ⁻⁴ dpm/mg)	% incorporation	% inhibition
6	10.01	0.45	0.890	0.04	91.1
7	63.08	7.7	26.89	3.3	57
8	40.42	4.96	36.20	4.0	19
9	25.81	1.16	15.58	0.07	94
10	27.82	1.25	26.04	1.17	6
11	63.08	7.7	24.78	3.04	61
12	63.08	7.7	29.58	3.6	53
13	40.42	4.96	40.34	4.95	0

chromium trioxide reagent gave the known aldehyde (**10**) [6].

Some modifications of C-16 were also carried out. Oxidation with sodium periodate and a catalytic amount of osmium tetroxide gave the 17-nor-16-ketone (**11**) (ν_{max}

1750 cm^{-1}). Hydrogenation over 10% Pd-C gave the dihydro-compound (**12**) ($\delta 1.03$, 3H, *d*, $J = 7 \text{ Hz}$, H-17). These compounds possessed spectroscopic properties in accord with their structures. The ^{13}C NMR assignments are given in Table 2.

Table 2. ^{13}C NMR signals of ring B *seco*-kaurenes (determined at 90.55 MHz in CDCl_3 , ppm from TMS)

Carbon atom	6	7	9	10	11	12	13
1	35.82	36.14	36.1	34.15	36.06	35.22	35.00
2	17.75	17.57	17.6	17.63	17.55	17.68	17.65
3	31.80	31.62	31.7	31.50	31.51	31.66	31.71
4	38.75	38.40	38.6	38.44	38.60	38.43	38.46
5	53.75	53.44	53.05	53.68	53.37	54.21	53.72
6	179.58	178.60	178.3	178.20	179.69	180.16	178.93
7	71.45	72.46	55.6	204.6	69.98	72.12	73.45
8	50.79	48.20	50.4	59.27	48.76	51.29	52.99
9	45.21	45.62	46.2	47.27	47.60	45.81	45.05
10	41.80	42.19	42.1	41.44	41.91	41.99	42.81
11	21.32	21.37	21.7	19.91	21.40	22.05	22.47
12	33.12	32.97	32.8	32.08	32.90	25.95	24.72
13	44.52	44.17	45.2	44.30	44.59	40.38	40.42
14	36.34	35.42	38.0	32.74	28.88	37.58	39.00
15	48.04	48.01	48.3	43.00	52.68	47.95	130.79
16	155.27	154.58	154.2	151.55	221.31	35.40	142.13
17	102.91	103.06	103.3	104.75	—	15.20	14.88
18	30.07	30.95	30.6	31.38	30.02	30.97	31.33
19	76.13	75.69	75.7	75.75	76.08	76.07	75.81
20	23.87	23.20	23.5	23.30	23.85	23.15	23.14
MeCO ₂ O		20.75					
MeCO ₂ O		171.31					

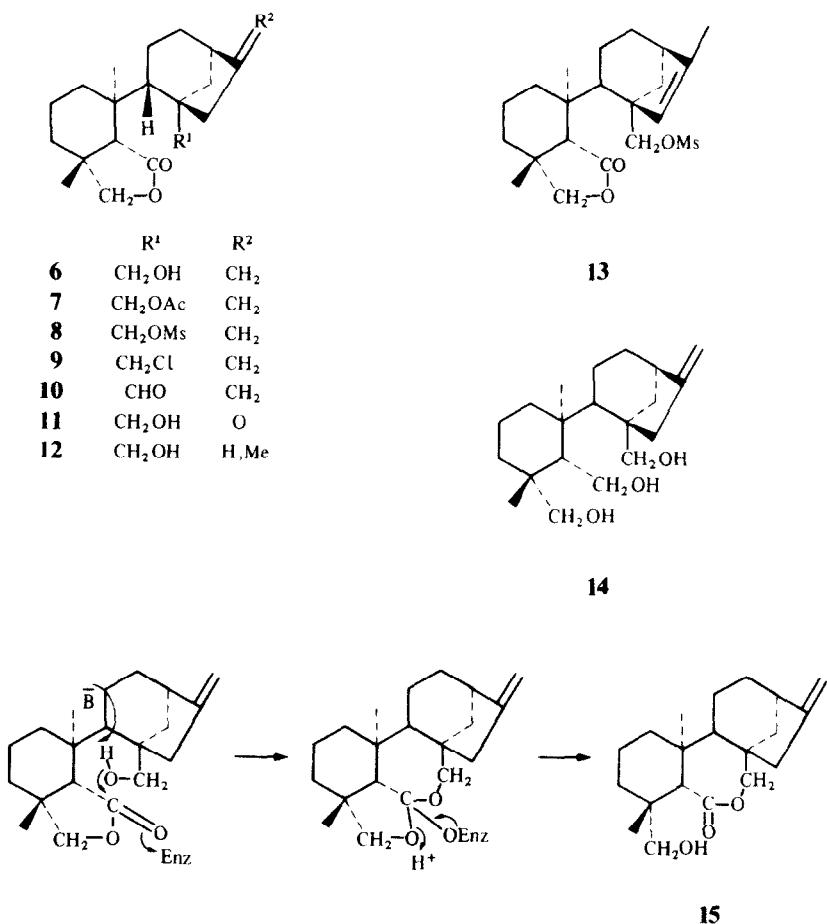
Inhibition of gibberellic acid biosynthesis was examined in *Gibberella fujikuroi*. The incorporation of [$2-^{14}\text{C}$] mevalonic acid into gibberellic acid in the presence of the putative inhibitor was compared with the incorporation in parallel control fermentations. The putative inhibitors were initially examined at a concentration of 40 mg/l (ca 10^{-4}M) which is approximately the concentration of gibberellic acid produced by our strain of *Gibberella fujikuroi* when grown on shake culture. The results are given in Table 1.

The triol (14) [6] was also examined but it proved to be insufficiently soluble for a meaningful result to be obtained. The 6,7-seco-alcohol (6) is clearly an efficient inhibitor and hence the effect of concentration was examined (Table 3) from which it can be seen that the alcohol is still showing approximately 50% inhibition at 10^{-7}M . In comparison various plant growth retardants containing the triazole moiety are reported to give a 50% reduction in gibberellin production by *Gibberella fujikuroi* at concentrations of 10^{-6} – 10^{-9} M [7].

Although the alcohol (6) inhibited the incorporation of *ent*-kaurene (0.29% in the presence of the inhibitor, 1.1% in the control), it did not inhibit the incorporation of gibberellin A₁₂ 7-aldehyde (2) into gibberellic acid (20.0%; 19.1% in control). This suggests that the alcohol (6) is blocking the oxidative metabolism of *ent*-kaurene.

The partial inhibition of the biosynthesis by the acetate (7) was traced by TLC examination of the neutral extract of the fermentation, to enzymatic hydrolysis of the acetate (7) to the alcohol (6) by *G. fujikuroi*. Incubation of the acetate (7) with the medium alone produced no hydrolysis. On the other hand, the chloro compound (9) which also showed significant activity, did not appear to be hydrolysed. The failure of the aldehyde (10) to inhibit the biosynthesis probably reflects the importance of the C-7 hydroxyl group in binding to the active site. The inhibition of the incorporation of [$2-^{14}\text{C}$] mevalonate into gibberellic acid by the alcohol (6) could not always be reproduced. This was traced, at least in part, to a fungal isomerization of the lactone (6) to its isomer (15) [8]. This isomerization did not take place in the medium alone over the time scale of the experiment. It could possibly be

mediated by either the ring contracting system or by a system related to that which cleaves ring B to form fujenal. (see Scheme 1). In conclusion we have shown that appropriately substituted 6,7-seco-kaurenes may be inhibitors of gibberellic acid biosynthesis affecting the oxidative metabolism of the kaurenoid ring B.


EXPERIMENTAL

General experimental details have been described previously [1]. The *ent*-7,19-dihydroxy-6,7-seco-kaur-16-en-6-oic acid 6-19-lactone (6) used in this work, was prepared by the reduction of fujenal (5) with NaBH_4 [6] and had mp 150–152° (lit. [6], 149–151°). The 7-aldehyde (10), obtained by oxidation with 8 N chromium trioxide in Me_2CO , had mp 155–157° (lit. [6], 156–157°). The acetate (7), prepared with Ac_2O in pyridine, crystallized from petrol as needles, mp 115–116°. (Found: C, 73.6; H, 8.8. $\text{C}_{22}\text{H}_{32}\text{O}_4$ requires C, 73.5; H, 8.6%). IR ν_{max} cm^{-1} : 1750, 1735, 1660, 880 cm^{-1} ; ^1H NMR (CDCl_3) (360 MHz): δ 1.13 (3H, s, H-20), 1.20 (3H, s, H-19), 2.13 (3H, s, OAc), 2.72 (1H, s, H-5), 3.75 and 4.04 (each 1H, d, J = 9 Hz, H-19), 3.84 and 4.45 (each 1H, d, J = 11.5 Hz, H-7), 4.73 and 4.82 (each 1H, m, H-17). The methanesulphonate (8) prepared with methanesulphonyl chloride in pyridine, crystallized from MeOH as needles, mp 114–115.5°. (Found, C, 63.3; H, 7.9. $\text{C}_{21}\text{H}_{32}\text{O}_5\text{S}$ requires C, 63.6; H, 8.1%). IR ν_{max} cm^{-1} : 1750, 1660, 1170, 880; ^1H NMR (CDCl_3) (360 MHz): δ 1.14 (3H, s, H-20), 1.30 (3H, s, H-18), 3.15 (3H, s, OMs) 3.75 and 4.60 (each 1H, d, J = 11 Hz), 4.02 and 4.13 (each 1H, d, J = 9 Hz) (H-7 and H-19), 4.77 and 4.85 (each 1H, m, H-17). On one occasion when the pyridine was removed by an acid wash rather than by treatment with aqueous CuSO_4 , the 15-ene isomer (13) was obtained as needles, mp 120–121.5°. (Found: C, 63.4; H, 7.7. $\text{C}_{21}\text{H}_{32}\text{O}_5\text{S}$ requires C, 63.6; H, 8.1%). IR ν_{max} cm^{-1} : 1750, 1170; ^1H NMR (CDCl_3): δ 1.12 (3H, s, H-20), 1.18 (3H, s, H-18), 1.70 (3H, d, J = 1.5 Hz, H-17), 3.07 (3H, s, OMs), 3.74 and 4.06 (each 1H, d, J = 9 Hz), 4.12 and 4.42 (each 1H, d, J = 9.5 Hz) (H-7 and H-19), 5.40 (1H, q, J = 1.5 Hz, H-15).

Chlorination of the hydroxy-lactone (6). The hydroxy-lactone (500 mg) in CCl_4 (100 ml) was heated with triphenylphosphine (600 mg) and pyridine (5 ml) under reflux for 3 days. The solvent was evapd and the residue chromatographed on silica gel. Elution with petrol-EtOAc (19:1) gave *ent*-7-chloro-19-

Table 3. Effect of concentration of compound 6 on gibberellic acid biosynthesis

Concentration of 6	% incorporation of ^{14}C MVA into gibberellic acid	% inhibition
Expt. 1 Control	1.026	—
$1.23 \cdot 10^{-4}\text{ M}$	0.072	93
$6.13 \cdot 10^{-5}\text{ M}$	0.380	63
$1.29 \cdot 10^{-5}\text{ M}$	0.500	51
$1.23 \cdot 10^{-6}\text{ M}$	0.680	34
$8.18 \cdot 10^{-8}\text{ M}$	0.730	29
Expt. 2 Control	1.127	—
$1.27 \cdot 10^{-4}\text{ M}$	0.041	96
$2.58 \cdot 10^{-5}\text{ M}$	0.390	65
$1.93 \cdot 10^{-5}\text{ M}$	0.460	59
$6.45 \cdot 10^{-6}\text{ M}$	0.570	49
$2.45 \cdot 10^{-6}\text{ M}$	0.630	44
$4.09 \cdot 10^{-7}\text{ M}$	0.790	30

Scheme 1.

hydroxy-6,7-seco-kaur-16-en-6-oic acid 6→19-lactone (9) (211 mg) which crystallized from EtOAc–petrol as needles, mp 177–178.5°. (Found: C, 71.2; H, 8.5. $C_{20}H_{29}O_2$ Cl requires C, 71.3; H, 8.7%). IR ν_{max} cm^{-1} : 1765, 1655, 880, 730; ^1H NMR (CDCl_3) (360 MHz): δ 1.15 (3H, s, H-20), 1.34 (3H, s, H-18) 2.21 (1H, s, H-5), 3.46 and 4.08 (each 1H, d, J = 11 Hz, H-7), 3.76 and 4.05 (each 1H, d, J = 9 Hz, H-19), 4.75 and 4.82 (each 1H, m, H-17).

Oxidation of the hydroxy-lactone (6) with OsO_4 and NaIO_4 . The hydroxy-lactone (1 g) in aq. THF (1:1) (100 ml) was treated with OsO_4 (100 mg). NaIO_4 (1.25 g) was added in portions over 30 min. After a further 1 hr, the soln was concentrated and poured into aq. NaCl. The products were recovered in EtOAc and chromatographed on silica gel. Elution with EtOAc–petrol (1:1) gave *ent*-7,19-dihydroxy-16-oxo-17-nor-6,7-seco-kauran-6-oic acid 6→19-lactone (11) (291 mg) as needles, mp 148–149°. (Found: C, 71.1; H, 8.8% $C_{19}H_{28}O_4$ requires C, 71.2; H, 8.8%). IR ν_{max} cm^{-1} : 3420, 1750, 1735; ^1H NMR (CDCl_3) (360 MHz): δ 1.17 (3H, s, H-20), 1.34 (3H, s, H-18), 3.54 and 4.10 (each 1H, d, J = 11.5 Hz, H-7) 3.80 and 4.03 (each 1H, d, J = 9 Hz, H-19).

Catalytic hydrogenation of the hydroxy-lactone (6). The hydroxy-lactone (1 g) in EtOAc (20 ml) containing Pd-C (10%, 200 mg) was stirred in an atmosphere of H_2 until the rapid uptake of H_2 ceased (30 min.) The soln was filtered, the solvent evapd and the residue chromatographed on silica gel to afford *ent*-7,19-dihydroxy-6,7-seco-kauran-6-oic acid 6→19-lactone (12) (671 mg) as a mixture of prisms and needles which both melted at 150–152°. (Found: C, 74.9; H, 9.7. $C_{20}H_{32}O_3$ requires C, 75.0; H,

10.1%). IR ν_{max} cm^{-1} : 3550, 1740; ^1H NMR (CDCl_3) (360 MHz): δ 1.03 (3H, d, J = 7 Hz, H-17), 1.12 (3H, s, H-20), 1.28 (3H, s, H-18), 3.24 and 4.12 (each 1H, d, J = 11.5 Hz), 3.78 and 4.04 (each 1H, d, J = 9 Hz, H-7 and H-19).

Incubation experiments. *Gibberella fujikuroi* (ACC 917) (40 flasks, 50 ml medium in each) was grown as described previously [1]. The 6,7-seco-kaurene (40 mg/l, culture broth) in EtOH (5 ml) and [$2-^{14}\text{C}$]MVA (10 μCi) in EtOH (5 ml) was evenly distributed over 20 flasks. The remaining 20 flasks (control) were treated with [$2-^{14}\text{C}$] MVA (10 μCi) in EtOH (5 ml). The flasks were then shaken for 4–5 days. The mycelium was filtered and the broth was acidified to pH 2 with dil. HCl, extracted with EtOAc and the extract separated into acidic and neutral fractions with aq. NaHCO_3 . The acid fraction was concentrated to a gum. Gibberellic acid (20 mg) was added to the acid fraction which was then methylated with CH_2N_2 in MeOH. The metabolites were separated by prep. TLC on silica gel in EtOAc–petrol (1:1). Methyl gibberellate was eluted from the plate and crystallized to constant radioactivity. % inhibition is defined as

$$\frac{(\% \text{ incorporation in presence of substrate}) - (\% \text{ incorporation in control})}{100 - (\% \text{ incorporation in control})} \times 100.$$

The results are given in Tables 1 and 3.

*Incubation of *ent*-[^{14}C]kaurene.* *Gibberella fujikuroi* (6 flasks, 100 ml in each flask) was grown for 7 days. *ent*-[$17-^{14}\text{C}$]Kaurene (10 mg, 4.98, $10^4 \text{ dpm}/\text{mg}$) in EtOH was distributed evenly

between the flasks. The alcohol (**6**) (12 mg in EtOH) was distributed over 3 flasks and 3 flasks were retained as a control. The fermentation was grown for a further 4 days. It was then worked up as above. Methyl gibberellate carrier (20 mg) was added to each of the methylated acid fractions and re-isolated by prep. TLC. The incorporations were: control, 2759 dpm = 1.108% incorporation, + substrate 739. dpm = 0.297% incorporation, 73% inhibition.

Incubation with gibberellin A₁₂ 7-aldehyde. The [17-¹⁴C] aldehyde (3.703×10^6 dpm) was evenly distributed between two groups of 5 flasks of *Gibberella fujikuroi* as above. The alcohol (**6**) (20 mg) was added to one group. The methyl gibberellate, isolated as above, showed the following incorporation: control, 7.063×10^5 dpm, 19.1% incorporation, + substrate, 7.408×10^5 dpm, 20.0% incorporation.

*Fungal isomerization of the lactone **6**.* The lactone (**6**) (90 mg) was incubated with *Gibberella fujikuroi* (5 flasks) grown as above for 5 days. The broth was harvested and split into acidic and neutral fractions. The neutral fraction was carefully chromatographed on silica gel. Elution with EtOAc afforded the lactone (**15**), (32 mg) identified by its IR and NMR spectra [8]. When the lactone **6** was shaken with the medium alone for a similar period and the broth extracted with EtOAc, no isomerization could be detected by TLC analysis.

Acknowledgements—We thank I.C.I. Plant Protection plc for a gift of fujenal and Dr D. Griffin for discussions.

REFERENCES

1. Hanson, J. R., Parry, K. P. and Willis, C. L. (1982) *Phytochemistry* **21**, 1575.
2. Hanson, J. R., Parry, K. P. and Willis, C. L. (1982) *Phytochemistry* **21**, 1955.
3. Hanson, J. R., Parry, K. P., Triana, J. and Willis, C. L. (1983) *Phytochemistry* **22**, 97.
4. Hanson, J. R. (1983) *Biochem. Soc. Trans.* **11**, 522.
5. Hanson, J. R., Hawker, J. and White, A. F. (1972) *J. Chem. Soc. Perkin Trans. I* 1892.
6. Galt, R. H. B. and Hanson, J. R. (1965) *J. Chem. Soc.* 1565.
7. Menhenett, R. and Lawrence, D. K. eds (1984) *Biochemical Aspects of Synthetic and Naturally Occurring Plant Growth Regulators*. British Plant Growth Regulator Group, Monograph, 11, 1984.
8. Baynham, M. K., Dickinson, J. M., Hanson, J. R. and Hitchcock, P. B. (1987) *J. Chem. Soc. Perkin Trans I* (in press).